China's Long-term Production Potential Evaluated

Feedstuffs Volume 75, Number 40, September 29, 2003, p.1, 20-22
By
James R. Simpson
Professor, International Agriculture
Faculty of Intercultural Communication
Ryukoku University, Kyoto, Japan

http://www.jamesrsimpson.com

simpson@world.ryukoku.ac.jp

Abstract

Projections to 2030 for China reveal that it can meet its cattle feed requirements without additional imports of feedstuffs mainly due to the large proportion of crop residues fed to them, but while imports of energy feeds for the livestock and fish sectors will not be required, increasing protein shortfalls are likely if appropriate agricultural sector policy decisions are not made.

Long-term Projections of China's Beef Production Potential

By James R. Simpson

Beef production has long been a source of contention among those modeling trade with China. Nearly all projections have indicated that China would be unable to produce sufficient feedstuffs to meet requirements for cattle production (as well as other animal and fish products) leading to grain and oilseed imports growing at an increasing rate, necessity of large net beef imports, or a combination of both. The purpose of this article is to explain why—technically—China can potentially meet its long-term beef requirements through domestic production. The term technically is crucial as the model used is not a trade or economics based one.

Research Method

The results provided in this article are based on a model especially developed for longterm projections of animal inventories, feedstuffs requirements and feedstuffs availabilities. The program is very large and complicated, with more than 5,000 lines of spreadsheet program, 800 variables and more than 2,200 parameters. The method used is to calculate all requirements and availabilities on the basis of metabolizable energy (ME) and crude protein (CP). Further information on the model, data and results for the entire livestock and fish sectors is available in Simpson (2003) and Simpson, Cheng and Miyazaki (1994).

China's Feedstuffs Requirements and Availabilities

Population and gross domestic income per capita are provided in Table 1 to assist in understanding the demand side. Population is expected to grow from 1.28 billion in 1999-2001 (hereafter, this three year average base year is termed 2000) to 1.37 billion in 2010, to 1.46 billion in 2020, and 1.49 billion in 2030. These constitute 7, 14 and 16 percent increases from the base period, respectively. Per capita income on a Purchasing Power Parity (PPP) basis is calculated to grow from \$3,940 in 2000, to \$20,560 in 2030. As a point of reference, the PPP in 2000 for Japan was about \$23,000, and \$33,000 for the USA.

It is concluded that *technically*, despite human population growth and changes in diet, China can continue to meet its energy requirements for animal and fish feedstuffs. However, protein requirements are projected to exceed the base period of 1999-2001 domestically produced availabilities by 13 percent in 2010, 32 percent in 2020 and 37 percent in 2030 (Table 2). These projections are based on quite conservative crop yield increases taking into account constraints on China's natural resources, and without consideration of the great potential biotechnology will probably have on crop production worldwide (e.g. Huang, et al, n.d.). Additional in-depth studies on China are available at the USDA briefing room website (USDA, n.d.) and the Western Coordinating Committee project "Assessing China as a Market and Competitor" website (WCC-101, n.d.). Implications for trade are provided at the end of this article.

Beef Production Model Inputs and Results

Consumption of Animal and Fish Products

Beef is the largest growth meat commodity in China; per capita production nearly doubles, from 3.9 kg in the base year, to 7.5 kg in 2030 (Table 3). Total meat and fish consumption was 92 kg in 2000, and is projected to reach 118 kg in 2030. As a comparison, the totals in 2000 were 115 kg in Japan, 142 in the USA, 101 kg in Germany and 117 kg in Taiwan.

Total production of animal and fish products from 1985 to 2030 is provided in Table 4. Imports and exports were held constant at 2000 levels in projections to show the effect on domestic feedstuffs requirements and availabilities. Total production of meat and fish increases 49 percent in the 30 years from 2000 to 2030. Beef and veal production increases 127 percent, from 4.9 million tons to 11.2 million tons during the 30-year projection period.

<u>Productivity improvement</u>

Remarkable growth has been recorded in China's livestock product production, and it is projected to continue for the foreseeable future primarily because there is still great latitude for further progress in production efficiency and productivity. A multitude of technical variables such as dressing percent, live weight, milk production and offtake rates are taken into account in the model for cattle, pigs and poultry to explain and project animal numbers and feedstuffs requirements. Pigs, for example, are quite complicated, involving 65 variables such as whether they are backyard or commercial, number born per litter, number of litters per year, weaning weights, time on feed by stage of feeding, and death loss, just to give a sampling of the information needed to explain and project technological changes in production. Poultry are equally as complicated.

Pigs provide a good example of the impact technology adoption can have on production. In 1985 only 54 kg of pork was produced per pig in inventory (Table 5). By 2000 it had reached 95 kg, and is projected to reach 145 kg by 2030. In comparison, the average in 2002 was 150 kg in Germany, 136 kg in the United Kingdom and 138 kg in the USA (FAO DATASTATS). Offtake rates (the percent of pigs going to slaughter compared to inventory) in China are projected to increase from 124 percent in 2000, to 170 percent in 2030. As a point of reference, rates for the above three other countries ranged from 144 to 195 percent in 2000 (data not shown in tables).

It is important to realize that productivity will continue to increase in other countries over the next three decades covered in the projections, and that China will benefit from future technological development influencing those changes as well as adoption of current technology, not to mention great structural changes that have been taking place. The point is that accuracy in projections about China's agriculture depends on a good understanding of its agricultural structure (including policy, research, education, etc.), knowledge about international agriculture and technology, recognition that agriculture is a dynamic industry and not a static one, and that in many respects China is more like European agriculture than its East Asian neighbors to which it is often,

and misleadingly, compared. Proper structural specification has been a chronic problem in trade modeling (McCalla and Revoredo, 2001).

Most cattle in China are found in the cropping areas. Originally they were mainly used for draft and transport, with milk and beef as by-products from aged animals that had to be culled. As the rural areas have begun to mechanize, and national per capita incomes have increased, demand for beef has also grown so that, although there is still a substantial portion of cattle used for work, a true beef industry is quickly emerging in which cows are kept primarily for calf production in both cropping and grassland areas. A variety of growing and fattening operations operations have sprung up. Most are small ones somewhat akin to those in the U.S. before and shortly after WWII. Some larger scale enterprises of several hundred head to several thousand head have developed, but U.S. style feedlots are unlikely to develop in the foreseeable future although pig and poultry units will continue to increase dramatically in size (Simpson, Shi, Li, Chen and Liu, 1999).

Productivity is increasing rapidly in China's cattle industry. In 1985 just 6 kg of beef was produced per head of cattle (including dairy cattle) in inventory (Table 5). By 2000 it had reached 47 kg. It is projected to reach 61 kg by 2010, then 77 kg in 2020, and 87 kg in 2030. In comparison, Germany recorded 91 kg in 2000, Japan 111 kg and the U.S. 124 kg (Table 6).

China's 6 percent cattle offtake rate in 1985 had climbed to 22 percent by 2000. It is projected to reach 29 percent in 2010 and then remain at about 30 percent. This may seem low compared to the U.S., which had 38 percent in 2000, but is reasonable because there are significant structural, management, and feeding differences between the two countries. The rate was 30 percent in Germany and 27 percent in Japan.

Carcass weights are another indicator of technology adoption, breed and management improvement, and feeding strategy, among other factors. The average for cattle in China grew from 106 kg in 1985 to 174 kg in 2000. It is projected to reach 293 kg in 2030, which would bring it in line with Germany, the UK and the USA in 2000 (Table 6). The heavy carcass weight in Japan (409 kg) reflects slow, long time feeding for their specialized dishes. Carcass weights in China are much lower, but the long, slow feed approach is becoming an accepted practice and fits their cuisine very well.

Inventory projections

Non-bovine work animal numbers are projected to decline from 24 million head in 2000, to 7 million head in 2030. There was an increase in their numbers until 1990 as farmer's income grew. The 1990s represented the beginning of the era of mechanization, including contracting

heavy farm work such as land preparation and harvesting. As a result, non-bovine work animal numbers declined 13 percent in that decade. Buffalo are also used for farm work. Their numbers are also projected to decline significantly, from 23 million head in 2000, to 7 million in 2030. These inventory reductions will free up considerable feedstuffs for other animals and farm-raised fish.

Draft/beef cattle numbers (termed beef cattle from now on) increased from 42 million head in 1985, to 99 million in 2000. They are projected to grow to 117 million head in 2010 and then remain at that level through 2020, reaching 123 million in 2030. In brief, beef cattle inventory more than doubled in the 15-year period to 2000, and is expected to grow 24 percent over the next 30 years. One big reason cattle numbers will increase dramatically, while non-bovine work animals and buffalo collectively will decline by 33 million head, is that cattle are a major source of human food while the others are not. Projections of these two categories are based on anticipated structural and farm management changes that will take place as the country modernizes.

Efficiency and Utilization of Feedstuffs

There is a strong relationship between body condition and feed consumption. Animals on a maintenance diet consume relatively small amounts of energy and protein, but production per head of inventory is also low. Most animals in China have traditionally been poorly fed. As time has passed a variety of management practices commensurate with improved diets and intake have been adopted that have increased production efficiency. Pigs and poultry in particular have benefited by improved quality and quantity in their diet. Sheep and goats have traditionally been small and poorly fed, and improvement will be slow in coming. Energy and protein requirements for cattle will increase for the next 10 to 15 years as heavy culling takes place, body size increases, and they are fed at a higher plane of nutrition. Once an adequate level of nutrition is reached commensurate with the feeding strategy, the amount of ME and CP per kg of beef produced will decline. In brief, each animal species is different in the way they are raised and consequently the feed requirements also vary.

Beef cattle accounted for 22 percent of all ME requirements by animals and pond raised fish in 2000 (Table 8). Projections are for cattle to account for 28 percent in 2030. Pigs utilized 41 percent of all ME in 2000 and that proportion is projected to be 40 percent in 2030. Protein utilization by beef cattle will increase from 20 to 23 percent of national requirement by 2030. Nutrition, including type of feedstuffs, is central to understand the extent to which China can meet

the great increases projected in livestock commodity and fish production to meet changes in demand for them.

Types of Feedstuffs Utilized

Each country feeds its animals according to resource availabilities and legislation concerning product quality, food safety desires, and comparative advantage in production of feedstuffs. This is a key point to understand and project China's beef cattle structure. The United States is an anomaly in world beef production by its almost total finishing of beef in large feedlots and almost exclusively on grain. This system has developed because of grading standards that essentially preclude fattening on forages or crop residues even though such a practice is often lower cost per kg of beef produced. The reason is that the sale price of forage finished animals is much lower than grain finished ones due to grading standards. Americans have come to believe their beef is the standard for quality beef, and that animals raised under other conditions are lower quality. Consequently, it is also believed that China will inexorably move toward a U.S. style, high average daily gain, grain-based fattening system. This way of thinking leads to the conclusion is that China will thus require substantial feedstuffs imports. I believe, as do the Australians Longworth, Brown and Waldron in their authoritative 2001 book Beef in China: Agribusiness Opportunities and Challenges, that such a structure will not evolve, and the projections in this article reflect the rationale that feeding systems will be silage and residue oriented rather than grain based.

About 1.2 trillion Mcal of feedstuffs were calculated to have been produced in China in 2000 (Table 9) although, as described earlier, that is below the actual amount due to lack of data on availabilities of many feedstuffs such as garbage and water plants, roadside and crop area grazing, etc. Of that, 9 percent was by-products, i.e. feedstuffs apart from principal crop production that enter international trade such as oilseed and other meals (cakes), and commonly sold products within a country such as spent brewers grains. Another 13 percent was from grasslands. The principal output of crops such as grains accounted for 42 percent of all ME. Principal crop outputs will increase continuously as a proportion of all ME produced, and are projected to reach 55 percent by 2030.

Nonconventional feedstuffs (NCFR) are really the heart of China's draft and beef cattle industry, as well as for other ruminants and non-bovine work animals. To a lesser extent they play a role in backyard poultry and pig units. NCFR, made up of crop residues such as maize and

sorghum stover, straw, vegetable and other crop and processing waste, vines of vegetables and potatoes, etc. constituted a whopping 36 percent of all ME produced in 2000, but it is expected to fall to 26 percent in 2030. Twenty six percent of all crude protein produced in China is calculated to have been derived from NCFR in 2000. That proportion is expected to decline to 22 percent in 2030.

Residues and Silage Fed to Animals

Most of the parameters in the model fall within rather definable limits as they are quite technical in nature. A few, such as the feeding of residues, are much more open to speculation as they depend so much on government policy. Thus a very conservative approach was taken with these variables and if anything, the amount fed will increase more than projected. It is estimated that 795 million MT of residues and silage were produced in 2000, and are projected to reach 1.0 billion MT in 2030 (Table 10). Residues accounted for 85 percent of the total in 2000 but, despite modest growth in production of them, that proportion will decline to 75 percent in 2030 as silage production will increase even more quickly.

About 346 million MT of residues and silage were fed in 2000, of which residues accounted for 66 percent. All silage produced is fed which, combined with considerable growth in production, leads to the proportion of silage fed of all residues and silage growing from 34 percent in 2000, to 50 percent in 2030.

The largest part of NCFR is simply crop residue waste that is burned in the field after harvest, plowed back into the ground, used in other activities such as paper making, or used for cooking and heating by farmers. The rest is fed to animals. Twenty three percent of vines produced are estimated to have been fed in 2000, along with 34 percent of straw and 40 percent of stover. Also, 34 percent of all residues were fed that period, and 44 percent of combined residue and silage production (Based on the author's calculations combined with those of Tingshuang, Sanchez and Peiyu, 2002). The proportions of residues will be about the same in 2030 (34 percent), but the total will increase (from 44 to 50 percent) due to a greater proportion of maize and sorghum being ensiled rather than being harvested for grain.

An important part of China's animal policy is to increase use of treated as well as untreated residues (Tingshuang, Sanchez and Peiyu, 2002). Stover is the preferred crop residue for feed due to higher feeding values. Rice straw has 1.43 Mcal/kg and 2.9 percent CP. In contrast, maize stover has 1.87 Mcal/kg and 5.4 percent CP, i.e., considerably more than straw. China embarked

on a crop residue improvement program in the mid 1980s. FAO and UNDP then provided considerable financial and technical assistance from 1987. By 2000, 13 prefectures and 380 counties had programs, including demonstration sites.

There are a number of ways to treat residues (and silage), but ammonia has become the most common. The benefits are that the lignin is broken down thus improving digestibility, and ME and CP content are increased. As an example, ME in maize stover can nearly double, from 1.87 Mcal/kg to 2.50 and CP from 5.4 to 8.0 percent. There is relatively little increase in ME by treating straw although CP increases from 2.9 to 4.3 percent, a modest gain. It is estimated that about 45 percent of all crop residues fed were treated in 2000 (including 49 percent of straw and 51 percent of stover fed). Government programs especially target residue treatment and the projection of reaching 64 percent of all residues fed in 2030 reflects this policy decision (Table 10).

Impact on Trade

The projections are that beef production (consumption) will grow from 3.9 kg in 2000, to 5.5 kg in 2010. Using those figures, as well as the other data presented in previous tables, the result would be a CP shortfall of 2.2 million MT in 2010 (Table 2). ME and CP are a useful way to quantify very different feedstuffs, but they're also an abstract measure. Consequently, the additional requirements over the base year (1999-2001) have been converted to a soybean equivalent (SBE) basis using a 40% crush rate, and resultant meal set at 43 percent CP. That converts to an equivalent of 12.9 million MT of additional soybean imports in 2010 as shown in the first (and most likely projection) scenario of Table 11. To place this in perspective, the USDA baseline import projection for China in 2007 is 5.3 million MT of soybeans, which is an additional 1.5 million MT over imports in 2000. Clearly, there are other sources of protein based feeds such as oilseed and fish meals. The soybean example is used because it is easy to visualize. Consider the year 2030. If projections for that year of 36.1 million MT SBE were realized, and all imports were soybeans, that amount would nearly reach the equivalent of total world soybean imports in 2000 (40 million MT).

A natural question is about sensitivity of the projections. It turns out that changes in crop yields and sown area do have an impact, and since the projections are based on moderate yield increases, additional response rates from further development and adoption of research results would have a mitigating impact on the shortfalls. As pointed out, beef is the principal commodity of concern in projections since cattle production utilizes such a large amount of feedstuffs.

The government program to foster feeding and treatment of crop residues is very important because only modest increases in feeding residues, particularly treated ones, do have a major impact on CP shortfalls. Consider, for example, just one commodity, maize stover. If the proportion of maize stover production in the base scenario that is treated and fed were increased from the projected 25 percent in 2010 to 35 percent (scenario 2), just 4.9 million tons of additional SBEs (rather than 12.9 million MT) would be needed to cover the shortfall (Table 11). An increase to 60 percent in 2030 from the projected 35 percent (while simultaneously untreated residues fed falls from 20 percent in 2010 to 5 percent in 2030) means just 13.6 million tons of additional SBE (a reasonable amount) would have to be imported rather than 36.1 million MT.

What about beef consumption increasing at a much faster rate than projected, say from 7.5 to 10.0 Kg in 2030? The answer is that, with the base scenario of 35 percent of maize stover being treated and untreated falling to 5 percent of residues produced (scenario 3), the SBE increases to an almost unimaginable 82 million MT. If the treatment percent were to increase to 60 percent(scenario 4), the SBE would still be an inconceivable 60 million MT. But, bear in mind that maize residue is just one of many residues covered by the government program. If feeding levels of many or most of residues and treatment of them were to expand in line with government programs, it is likely that protein shortfalls, or at least most of them, could be met with reasonable levels of protein oriented imports. The point is that relatively simple solutions are available to meet projected shortfalls in protein requirements, they are in place, and they are an important component to meet feedstuffs requirements.

Conclusions

It can be concluded that **technically** China will be able to meet its demand for beef as well as other animal and freshwater fish products over the next several decades. Longworth, Brown and Waldron (2001) and Tuan, Cheng and Peng (2001) conclude that China also has production cost advantages in beef production over potential competitors. In all likelihood, although protein based feedstuffs imports will continue to grow to meet the varied requirements of the entire food chain, China should be able to meet its energy feedstuffs requirements, particularly for beef production. There will be imports and exports of beef to meet specialized needs such as certain parts of the hotel trade and some cuts for home use, but relative to China's size they will be small provided government adopts appropriate policy measures. One principal reason, as highlighted in this

article, is that crop residues and silage will remain as mainstays of cattle feedstuffs needs, and relatively little grain will be fed.

Editor's note. James R. Simpson, Professor Emeritus, University of Florida, is Professor of International Agriculture, Ryukoku University, Japan. He can be reached at: simpson@world.ryukoku.ac.jp or http://www.jamesrsimpson.com

References

- Huang, Jikun, Ruifa Hu, Qinfang Wang, James Keeley and Jose Falck Zepeda. "Agricultural Biotechnology Development, Policy and Impacts in China," unpublished paper, n.d. available at http://www.ids.ac.uk/ids/env/PDFs/China%20PaperEPW.pdf
- Longworth, John W., Colin G. Brown and Scott A. Waldron. *Beef in China: Agribusiness Opportunities and Challenges*. Santa Lucia, Queensland: University of Queensland Press, 2001.
- McCalla, Alex F. and Cesar L. Revoredo. *Prospects for Global Food Security: A Critical Appraisal of Past Projections and Predictions*. IFPRI Food, Agriculture and the Environment Discussion Paper 35, IFPRI, Washington, D.C., October 2001.
- Simpson, James R. "Long-term Projections of Bovine Meat in China: Focus on Production Potential." China as a Market and Competitor. WCC-101, Portland, Oregon, April 17-18, 2003. Available at http://www.china.wsu.edu/pubs/presentation 03/pres2003.htm
- Simpson, James R., Xu Cheng and Akira Miyazaki. *China's Livestock and Related Agriculture: Projections to 2000*, Wallingford, UK, CAB International, 1994.
- Simpson, James R., Youlong Shi, Li Ou, Weisheng Chen and Shuxia Liu. "Survey Shows Chinese Farms Substantial in Size." *Feedstuffs*. 1999, September 27, pp 16, 30-32.
- Tingshuang, Guo, Manuel D. Sanchez and Guo Peiyu. *Animal production Based on Crop Residues: Chinese Experiences.* Rome, FAO, 2002.
- Tuan, Francis C., Guoqiang Cheng and Tingjun Peng. "Comparative Advantage and Trade Competitiveness of Major Agricultural Products in China." *Proceedings of WCC-101 Agricultural Trade with China in the New Economic and Policy Environment*, Sonoma, California, April 8-10, 2001. Available at http://www.china.wsu.edu/pubs/pub2001.htm
- U.S. Department of Agriculture, "Briefing Room on China." Regular update. This site is available at: http://www.ers.usda.gov/Briefing/China/
- Western Coordinating Committee project "Assessing China as a Market and Competitor", available at http://www.china.wsu.edu/

ITEM	1984-1986	1989-1991	1994-1996	1999-2001	2010	2020	2030
		_		POPULATION			
				MILLIONS			
POPULATION	1,075.9	1,161.4	1,226.0	1,282.4	1,374.4	1,455.0	1,494.1
	_	GR	OSS DOMEST	TIC INCOME (GD) PER CAPITA		
	COMPOUND A	NNUAL GROV	VTH RATE	BASE YEAR	PROJ	ECTION YEAR	S
	2000-2010	2010-2020	2020-2030	2000	2010	2020	2030
		PERCENT			\$ US		
PPP BASIS	7.0	5.5	4.5	3,940	7,751	13,239	20,560
	0.0						
EXCHANGE RATE BASIS	7.0	5.5	4.5	840	1,652	2,823	4,383
					YUAN		
EXCHANGE RATE TO DOLLARS				8.28	8.28	8.28	8.28
PPP BASIS				32,623	64,175	109,620	170,236
EXCHANGE RATE BASIS				6,955	13,682	23,371	36,294

SOURCE: BASE YEAR PPP AND EXCHANGE RATE BASIS FROM WWW.rieti.go.jp/en/China/02080901.html POPULATION FROM FAO DATASTATS.

TABLE 2. METABOLIZABLE ENERGY AND CRUDE PROTEIN REQUIREMENTS AND AVAILABILITIES, ANIMALS AND FISH, CHINA, ECONOMY ROBUST, NO CHANGE IN TRADE FROM BASE LEVEL, 1999-2001 TO 2030

Item	AVG 99-2001	2010	2020	2030
		METABOLIZABL		
ANIMALS AND FISH		MILLION N	/Ical	
REQUIREMENTS	1,595,970	1,896,705	2,124,963	2,272,334
AVAILABILITIES	1,211,936	1,517,321	1,756,966	1,967,125
REQUIREMENTS OVER AVAILABILITIES	384,034	379,384	367,997	305,209
ADDITIONAL REQUIREMENTS OVER BASE YEAR		-4,650	-16,037	-78,825
REQUIREMENTS OVER AVAILABILITIES	24	20	nt 17	13
DIFFERENCE FROM BASE PERIOD (PERCENT)		-1	-4	-21
DIFFERENCE FROM PREVIOUS PERIOD (PERCENT)		-1	-3	-17
ANIMALS AND FISH INCREASE OVER BASE YEAR INCREASE OVER BASE YEAR				
REQUIREMENTS		19	33	42
AVAILABILITIES		25	45	62
		CRUDE PRO	DTEIN	
		1,000 N	ЛТ	
ANIMALS AND FISH				
REQUIREMENTS	69,742	83,576	96,155	106,145
AVAILABILITIES	52,961	64,576	73,972	83,150
REQUIREMENTS OVER AVAILABILITIES	16,782	19,000	22,183	22,995
ADDITIONAL REQUIREMENTS OVER BASE YEAR		2,218	5,401	6,213
		Perce	nt	
REQUIREMENTS OVER AVAILABILITIES	24	23	23	22
DIFFERENCE FROM BASE PERIOD (PERCENT)		13	32	37
DIFFERENCE FROM PREVIOUS PERIOD (PERCENT)		13	17	4
ANIMALS AND FISH OVER THE BASE YEAR INCREASE OVER BASE YEAR				
REQUIREMENTS		20	38	52
AVAILABILITIES		20	38 40	52 57
SOURCE: SIMPSON, MODELING RESULTS.	-		40	31

TABLE 3. PROJECTIONS OF PER CAPITA MEAT AND FISH SUPPLY, CHINA, ECONOMY ROBUST, 1999-2000 TO 2030

	COM	POUND ANNU	AL				
	GROWTH	RATE CALCUL	ATED	PROJECTION PER CAPITA ENTERED			
_	2000-2010	2010-2020	2020-2030	1999-2001	2010	2020	2030
_		PCT			KG		
BEEF AND VEAL	3.6	1.7	1.4	3.9	5.5	6.5	7.5
PORK	0.4	0.6	0.5	32.6	34.0	36.0	38.0
MUTTON AND GOAT	0.8	0.2	0.0	2.1	2.3	2.4	2.4
MUTTON AND LAMB	0.7	0.4	0.0	1.1	1.2	1.3	1.3
GOAT	0.9	0.0	0.0	1.0	1.1	1.1	1.1
BUFFALO MEAT	-2.2	-2.7	-6.7	0.3	0.2	0.2	0.1
TOTAL, RED MEAT	0.8	0.7	0.6	38.9	42.0	45.0	47.9
POULTRY	3.5	2.5	1.6	9.9	14.0	18.0	21.0
TOTAL MEAT	1.4	1.2	0.9	48.8	56.0	63.0	68.9
FISH,FRESH	1.3	0.4	0.7	11.8	13.5	14.0	15.0
TOTAL MEAT & FISH	0.8	0.9	0.8	92.1	99.5	109.0	117.9
MILK							
COW	1.4	4.1	5.2	7.0	8.0	12.0	20.0
GOAT	-0.1	0.0	0.0	0.2	0.2	0.2	0.2
BUFFALO	-1.7	-3.4	-7.3	2.1	1.7	1.2	0.6
EGGS, HEN	0.8	0.1	0.0	15.1	16.3	16.5	16.5

SOURCE: SIMPSON, MODELING RESULTS.

TABLE 4. TOTAL PRODUCTION OF MEAT AND FISH, CHINA, ECONOMY ROBUST, 1984-86 TO 2030

SPECIES	1984-1986	1989-1991	1994-1996 A\	1994-1996 AVG 99-2001		2020	2030
				-1.000 MT			
BEEF AND VEAL	406	1,168	3,054	4.944	7,559	9,458	11,206
PORK	17,322	24,062	33,010	41,811	46,730	52,380	56,776
MUTTON AND GOAT	601	1,071	1,682	2,731	3,161	3,419	3,511
MUTTON AND LAMB	307	551	893	1,438	1,649	1,819	1,868
GOAT	294	520	789	1,292	1,512	1,601	1,644
BUFFALO MEAT	127	165	275	369	317	256	131
TOTAL, RED MEAT	18,456	26,465	38,021	49,855	57,767	65,513	71,624
POULTRY	2,092	3,855	8,279	12,671	19,242	26,190	31,376
TOTAL MEAT	20,548	30,321	46,300	62,526	77,009	91,703	103,000
FISH,FRESH		5,263	10,475	15,175	18,554	20,370	22,412
TOTAL MEAT & FISH		50,337	86,083	118,069	136,795	158,633	176,211
MILK							
COW	2,619	4,411	6,090	8,916	10,995	17,460	29,882
GOAT	144	163	194	234	247	262	269
BUFFALO	1,627	1,907	2,200	2,633	2,377	1,787	859
EGGS, HEN	4,225	6,701	13,912	19,390	22,403	23,935	24,653

SOURCE: HISTORICAL DATA FROM FAO DATASTATS. PROJECTIONS FROM SIMPSON, MODELING RESULTS.

TABLE 5. PRODUCTION PER HEAD OF INVENTORY, CHINA, ECONOMY ROBUST, 1984-86 TO 2030

					YEAR			
SPECIES	1984-1986	1989-1991	1994-19	96	AVG 99-2001	2010	2020	2030
			KG OF I	MEAT	PER HEAD OF	INVENTORY		
SHEEP		3	5	8	11	11	12	13
GOATS		5	5	6	9	9	9	10
CATTLE		6	15	31	47	61	77	87
BUFFALO		6	8	12	16	16	18	19
PIGS	5	54	67	81	95	103	130	145
POULTRY (JAN 1 INV)		1	2	2	3	4	6	7
			KG OF I	MILK	PER HEAD OF	INVENTORY		
GOATS		1	1	1	1	1	1	1
MILK COWS	1,47	'5 1,4	453	1,436	1,680	2,046	3,255	5,580
BUFFALO	8	33	89	96	116	121	123	128

SOURCE: SIMPSON, MODELING RESULTS.

TABLE 6. INTERNATIONAL COMPARISON OF CATTLE DATA

	CHINA	ARGENTINA	GERMANY	JAPAN	UK	USA
			KG			
PRODUCTION PER HEAD OF INVENTORY						
1979-1981	5	53	91	101	80	90
1984-1986	6	52	95	117	88	101
1989-1991	15	54	104	117	83	109
1994-1996	31	52	90	119	75	112
1999-2001	47	54	91	111	61	124
2010	61					
2020	77					
2030	87					
CARCASS WEIGHTS						
1979-1981	100	201	257	337	260	271
1984-1986	106	207	264	254	271	272
1989-1991	146	215	286	395	383	299
1994-1996	140	210	296	400	272	310
1999-2001	174	220	310	409	296	326
2010	221					
2020	270					
2030	293					
			PERCEN	T		
OFFTAKE RATES						
1979-1981	5	26	36	30	31	33
1984-1986	6	25	36	33	32	37
1989-1991	10	25	36	30	29	37
1994-1996	22	25	31	30	28	36
1999-2001	22	25	30	27	21	38
2010	29					
2020	30					
2030	31					

SOURCE:FAO DATASTATS AND AUTHORS PROJECTIONS.

-				YEAR			
SPECIES	1984-1986	1989-1991	1994-1996	AVG 99-2001	2010	2020	2030
				1.000 HEAD			
NON-BOVINE WORK ANIMALS				1,000 112/12			
ASSES	9,942	11,128	10,853	9,906	7,466	4,021	1,151
CAMELS	542	470	360	330	242	197	157
HORSES	10,956	10,338	10,025	8,889	6,236	5,095	4,382
MULES	4,785	5,417	5,480	4,647	2,822	1,876	1,017
TOTAL, NON-BOVINE	26,225	27,353	26,718	23,772	16,765	11,190	6,708
CATTLE							
MILK COWS	1,776	3,037	4,241	5,308	5,374	5,364	5,355
DRAFT/BEEF	41,563	54,835	68,803	98,869	117,813	116,759	123,455
TOTAL CATTLE	43,339	57,872	73,044	104,177	123,187	122,123	128,810
BUFFALO	19,571	21,412	23,030	22,681	19,704	14,530	6,732
TOTAL,CATTLE,BUFFALO	62,910	79,284	96,074	126,858	142,891	136,654	135,542
TOTAL LARGE ANIMALS	89,135	106,637	122,792	150,630	159,657	147,844	142,250
SHEEP	96,108	112,299	118,919	130,539	146,135	151,942	147,592
GOATS	64,521	95,615	126,431	149,245	166,649	170,121	168,669
TOTAL SMALL RUMINANTS	160,629	207,914	245,350	279,784	312,784	322,064	316,261
PIGS							
COMMERCIAL				154,134	204,594	302,370	356,833
BACKYARD				286,248	250,060	100,790	35,291
TOTAL	319,078	360,543	408,782	440,382	454,654	403,160	392,124
				MILLION BIRDS-			
TOTAL POULTRY	1,586	2,558	3,914	4,410	4,775	4,599	4,298

SOURCE: HISTORICAL DATA FROM FAO DATASTATS. PROJECTIONS FROM SIMPSON, MODELING.

TABLE 8. METABOLIZABLE ENERGY AND CRUDE PROTEIN REQUIREMENTS BY SPECIES GROUPS, CHINA, ECONOMY ROBUST, 1999-2001 TO 2030

	TOTAL RE	QUIREMENTS		SPECIES PROPORTION	
SPECIES	ME	СР		ME	СР
	-Million Mcal-	-1000 MT- <u>A</u>	VG 99-2001	PERCE	ENT
DRAFT/BEEF CATTLE	352,933	14,074		22.1	20.2
OTHER LARGE ANIMALS	134,344	5,407		8.4	7.8
TOTAL LARGE ANIMALS	487,277	19,481		30.5	27.9
SMALL RUMINANTS	124,315	5,678		7.8	8.1
PIGS	660,159	23,534		41.4	33.7
POULTRY	154,003	8,182		9.6	11.7
FISH, FRESH WATER	170,217	12,868		10.7	18.5
TOTAL	1,595,970	69,742		100.0	100.0
		_	2030		
DRAFT/BEEF CATTLE	627,249	23,837		27.6	22.5
OTHER LARGE ANIMALS	90,029	4,262		4.0	4.0
TOTAL LARGE ANIMALS	717,278	28,100		31.6	26.5
SMALL RUMINANTS	154,837	7,103		6.8	6.7
PIGS	909,159	33,781		40.0	31.8
POULTRY	311,544	20,576		13.7	19.4
FISH, FRESH WATER	179,516	16,585		7.9	15.6
TOTAL	2,272,334	106,145		100.0	100.0

SOURCE: SIMPSON MODELING.

TABLE 9. TOTAL METABOLIZABLE ENERGY AND CRUDE PROTEIN PRODUCED BY SOURCE TYPE, CHINA, ECONOMY ROBUST, 1999-2001 TO 2030 (1)

ITEM	AVG 99-2001	2010	2020	2030				
	<u>N</u>	1ETABOLIZABL	E ENERGY					
		MIL	LION Mcal					
BY-PRODUCTS	110,684		164,850					
NONCONVENTIONAL	441,711	528,720	524,847	516,587				
GRASSLAND	156,511	167,712	171,153	174,435				
PRINCIPAL CROP(2)			,	1,080,700				
TOTAL	1,211,936	1,517,321	1,756,966	1,967,125				
		F	PERCENT					
BY-PRODUCTS	9	9	9	10				
NONCONVENTIONAL	36	35	30	26				
GRASSLAND	13	11	10	9				
PRINCIPAL CROP(2)	42	45	51	55				
TOTAL	100	100	100	100				
		CRUDE PF	ROTEIN					
		1 (000 TONS					
BY-PRODUCTS	13,026	,	20,177					
NONCONVENTIONAL	13,641	,	17,761	•				
GRASSLAND	5,529	5,931	6,120	6,277				
PRINCIPAL CROP(2)	20,764	25,051	29,914	34,702				
TOTAL	52,961	64,576	73,972	83,150				
		PERCENT						
BY-PRODUCTS	25	25	27	29				
NONCONVENTIONAL	26	27	24	22				
GRASSLAND	10	9	8	8				
PRINCIPAL CROP(2)	39	39	40	42				
TOTAL	100	100	100	100				

SOURCE:SIMPSON MODELING.

⁽¹⁾ THE ACTUAL ME IS HIGHER, BUT CANNOT BE CALCULATED DUE TO PROBLEMS IN ESTIMATION OF NONPUBLISHED NUMBERS SUCH AS GARBAGE FEEDING, WATER PLANTS, NON-SPECIFIED FORAGES, STATISTICAL ERRORS IN REPORTED DATA, ETC.

⁽²⁾ INCLUDES SILAGE.

TABLE 10. TOTAL RESIDUES AND SILAGE PRODUCED AND TREATED IN CHINA, ECONOMY ROBUST, 2000 AND 2010

ITEM	AVG 99-2001	2010	2020	2030	AVG 99-2001	2010	2020	2030	
	PERCENT								
	-	RESIDUES AND SILAGE PRODUCED							
VINES	130,113	157,218	179,784	201,060	16	17	18	19	
STRAW	380,303	380,550	381,106	368,439	48	41	38	36	
STOVER	165,887	182,669	197,798	206,022	21	20	20	20	
RESIDUES	676,303	720,437	758,688	775,521	85	79	77	75	
SILAGE	119,163	197,018	231,879	261,998	15	21	23	25	
TOTAL	795,466	917,455	990,567	1,037,519	100	100	100	100	
	-	RESIDUES	AND SILAC	GE FED AN	ID PROPORTION	OF TOTAL	-		
VINES	30,100	41,262	45,391	50,780	9	9	9	10	
STRAW	130,495	151,689	145,706	126,377	38	32	29	24	
STOVER	66,311	82,715	80,228	83,324	19	17	16	16	
RESIDUES	226,906	275,666	271,325	260,481	66	58	54	50	
SILAGE TOTAL	119,163 346,069	197,018 472,684	231,879 503,204	261,998 522,479	34 100	42 100	46 100	50 100	
	ĺ	PERCENT O	F EACH RE	SIDUE AN	D SILAGE PRODI	UCED FED			
VINES	30,100	41,262	45,391	50,780	23	26	25	25	
STRAW	130,495	151,689	145,706	126,377	34	40	38	34	
STOVER	66,311	82,715	80,228	83,324	40	45	41	40	
RESIDUES	226,906	275,666	271,325	260,481	34	38	36	34	
SILAGE	119,163	197,018	231,879	261,998	100	100	100	100	
TOTAL	346,069	472,684	503,204	522,479	44	52	51	50	
	<u>-</u>	INC	REASE IN T	OTAL FED	FROM BASE PE	RIOD			
VINES						37	51	69	
STRAW						16	12	-3	
STOVER						25	21	26	
RESIDUES						21	20	15	
SILAGE						65	95	120	
TOTAL						37	45	51	
	ı	RESIDUES A	AND SII AGE	TREATER	D, AND AS A PRO	PORTION			
	-				T OF PRODUCTI				
VINES	4,077	8,186	9,434	10,568	3	5	5	5	
STRAW	64,437	80,566	83,384	84,440	17	21	22	23	
STOVER	33,699	46,181	59,250	71,392	20	25	30	35	
RESIDUES	102,212	134,932	152,068	166,401	15	19	20	21	
SILAGE	0	0	0	0	0	0	0	0	
TOTAL	102,212	134,932	152,068	166,401	13	15	15	16	
	ı	RESIDUES A			D, AND AS A PRO T FED TO ANIMA				
VINITO	4.077	0.400					04	04	
VINES	4,077	8,186	9,434	10,568	14	20	21 57	21 67	
STRAW	64,437	80,566	83,384	84,440	49 51	53 56	57 74	67	
STOVER RESIDUES	33,699 102,212	46,181 134,932	59,250 152,068	71,392 166,401	51 45	56 49	74 56	86 64	
SILAGE	102,212	134,932	152,068	100,401	45	49 0	0	0	
TOTAL	102,212	134,932	152,068	166,401	30	29	30	32	
IOIAL	102,212	107,302	102,000	100,401	30	23	30	32	

SOURCES: SIMPSON MODELING WITH RECOGNITION OF TINGSHUANG, SANCHEZ AND PEIYU, 2002, FOR MUCH OF THE BASIC DATA FOR 2000 AND 2010.

TABLE 11. SCENARIOS ABOUT THE IMPACT OF CROP RESIDUES ON SOYBEAN IMPORTS, CHINA, ECONOMY ROBUST, 1999-2001 TO 2030

ITEM	AVG 99-2001	2010	2020	2030
	BEEF	CONSUMPT	ION AT PROJ	ECTED LEVEL
PER CAPITA BEEF CONSUMPTION (KG)	3.9	5.5	6.5	7.5
SCENARIO 1 (BASE) PROPORTION OF MAIZE STOVER PRODUCTION UNTREATED AND FED TO ANIMALS (PERCENT) TREATED AND FED TO ANIMALS (PERCENT) SHORTFALL IN CP OVER BASE (1,000 MT) ADDITIONAL SOYBEAN IMPORTS (MILLION MT) (1)	20 20 	20 25 2,218 12,897	10 30 5,401 31,402	5 35 6,213 36,122
SCENARIO 2 PROPORTION OF MAIZE STOVER PRODUCTION UNTREATED AND FED TO ANIMALS (PERCENT) TREATED AND FED TO ANIMALS (PERCENT) SHORTFALL IN CP OVER BASE (1,000 MT) ADDITIONAL SOYBEAN IMPORTS (MILLION MT) (1)	20 20 	20 35 850 4,939	10 50 2,428 14,117	5 60 2,337 13,590
PER CAPITA BEEF CONSUMPTION (KG)	3.9	CONSUMPT 6.0	9.0	10.0
SCENARIO 3 PROPORTION OF MAIZE STOVER PRODUCTION UNTREATED AND FED TO ANIMALS (PERCENT) TREATED AND FED TO ANIMALS (PERCENT) SHORTFALL IN CP OVER BASE (1,000 MT) ADDITIONAL SOYBEAN IMPORTS (MILLION MT) (1)	20 20 	20 25 3,973 23,100	10 30 13,699 79,644	5 35 14,156 82,301
SCENARIO 4 PROPORTION OF MAIZE STOVER PRODUCTION UNTREATED AND FED TO ANIMALS (PERCENT) TREATED AND FED TO ANIMALS (PERCENT) SHORTFALL IN CP OVER BASE (1,000 MT) ADDITIONAL SOYBEAN IMPORTS (MILLION MT) (1)	20 20 	20 35 2,604 15,142	10 50 10,726 62,359	5 60 10,280 59,768

SOURCE:SIMPSON MODELING.

⁽¹⁾ THE AMOUNT ON A SOYBEAN EQUIVALENT BASIS NEEDED TO COVER THE SHORTFALL IN DOMESTICALLY PRODUCED CRUDE PROTEIN AVAILABILITIES. THE FIRST SCENARIO IS SHOWN IN TABLE 2. THE CRUSH RATE IS 40 PERCENT AND THE CP CONTENT OF THE RESULTANT SOYBEAN MEAL IS 43 PERCENT.